Machine-Learning for Brain-Computer Interfaces

Jeremy Hill

Max Planck Institute for Biological Cybernetics

Tübingen, Germany

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

BCI as a Potential Assistive Technology

• Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

BCI as a Potential Assistive Technology

• Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Communication

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
 - Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
 - Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

• Rehabilitation of movement

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
 - Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

- Rehabilitation of movement
- Relief of phantom-limb pain

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
 - Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Rehabilitation of movement
- Relief of phantom-limb pain
- Control of prosthetics or FES

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
 - Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Rehabilitation of movement
- Relief of phantom-limb pain
- Control of prosthetics or FES

• Other...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• interruptions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- interruptions
- fatigue, pain, drugs

- interruptions
- fatigue, pain, drugs
- noisy, non-"standard" and non-stationary EEG

- interruptions
- fatigue, pain, drugs
- noisy, non-"standard" and non-stationary EEG
 - slower ERP responses, more low-frequency dominance

- interruptions
- fatigue, pain, drugs
- noisy, non-"standard" and non-stationary EEG
 - slower ERP responses, more low-frequency dominance

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

blood-sugar- and fatigue-dependent changes

 "good-day-bad-day" syndrome: any exploration of induction parameters requires an alternating or mixed design, halving the amount of data in any one experimental condition on any one day

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

 "good-day-bad-day" syndrome: any exploration of induction parameters requires an alternating or mixed design, halving the amount of data in any one experimental condition on any one day

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

• data set sizes are small to start with

 "good-day-bad-day" syndrome: any exploration of induction parameters requires an alternating or mixed design, halving the amount of data in any one experimental condition on any one day

- data set sizes are small to start with
- more frequent session-to-session transfer problems

Implanted microelectrode array (Cyberkinetics, Inc)

Figure from Hochberg et al. Nature, July 2006.

• □ ▶ < □ ▶ < □ ▶</p>

3

Department of Epileptology, University of Bonn, 2004

Electrocorticography (ECoG)

Electroencephalography (EEG)

・ロト ・聞ト ・ヨト ・ヨト

Near Infra-Red Spectrophotometry (NIRS)

(日) (圖) (E) (E) (E)

Magnetoencephalography (MEG)

Functional Magnetic Resonance Imaging (fMRI)

▲ロ → ▲圖 → ▲ 画 → ▲ ■ → の Q ()・

• Attention (overt and/or covert) to one of a number of stimuli

- Attention (overt and/or covert) to one of a number of stimuli
 - Most common example: visual grid speller (Farwell & Donchin 1988)

A	в	С	D	Е	F
G					
M					
S					
Y					
5					

time \rightarrow

F			A
L			G
R			м
х			5
4			Y
spc			5

time \rightarrow

A	в	С	D	F
G	Ц.			
Μ	N			
S	т			
Y	Z			
5	6			

time \rightarrow

	D	
	J	
	Р	
	v	
	2	
	8	

time \rightarrow

A			
G			
М			
S			
Y			
5			

time \rightarrow

ន	т	U	v	W	x
s Y	T Z	U 1	v 2	W 3	X 4

time \rightarrow

- Attention (overt and/or covert) to one of a number of stimuli
 - Most common example: visual grid speller (Farwell & Donchin 1988)

• BUT: for *completely* paralysed users, vision deteriorates.

- Attention (overt and/or covert) to one of a number of stimuli
 - Most common example: visual grid speller (Farwell & Donchin 1988)

• BUT: for *completely* paralysed users, vision deteriorates. ~ incentive to design auditory-/tactile-based methods.

- Attention (overt and/or covert) to one of a number of stimuli
 - Most common example: visual grid speller (Farwell & Donchin 1988)

- BUT: for *completely* paralysed users, vision deteriorates. ~> incentive to design auditory-/tactile-based methods.
- "Mental tasks"

- Attention (overt and/or covert) to one of a number of stimuli
 - Most common example: visual grid speller (Farwell & Donchin 1988)
 - BUT: for *completely* paralysed users, vision deteriorates. ~> incentive to design auditory-/tactile-based methods.
- "Mental tasks"
 - Most common example: imagined movement of hands or feet.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Attention (overt and/or covert) to one of a number of stimuli
 - Most common example: visual grid speller (Farwell & Donchin 1988)
 - BUT: for *completely* paralysed users, vision deteriorates. ~ incentive to design auditory-/tactile-based methods.
- "Mental tasks"
 - Most common example: imagined movement of hands or feet.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• BUT: for users with motor-neuron disease, will the motor system continue functioning well enough long-term?

- Attention (overt and/or covert) to one of a number of stimuli
 - Most common example: visual grid speller (Farwell & Donchin 1988)
 - BUT: for *completely* paralysed users, vision deteriorates. ~ incentive to design auditory-/tactile-based methods.
- "Mental tasks"
 - Most common example: imagined movement of hands or feet.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 BUT: for users with motor-neuron disease, will the motor system continue functioning well enough long-term?
→ incentive to explore non-motor mental tasks.

Event-Related Potentials

figures from Polich (2007) Clinical Neurophysiology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

SINGLE-STIMULUS

figures from Polich (2007) Clinical Neurophysiology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○三 のへぐ

figures from Polich (2007) Clinical Neurophysiology

figures from Polich (2007) Clinical Neurophysiology

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のくで

Bandpower

Event-Related Desynchronization in motor imagery: classify imagined left hand movement vs. imagined right hand movement based on power in (say) 10 Hz-band of estimated pre-motor cortex sources in the left and right hemispheres.

log bandpower L. hem.

Bandpower

200

Bandpower

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• High noise

- High noise
- Small number of data exemplars

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- High noise
- Small number of data exemplars

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

• Very large number of features.

- High noise
- Small number of data exemplars
- Very large number of features. Well actually, the features are usually *highly* correlated.

- High noise
- Small number of data exemplars
- Very large number of features. Well actually, the features are usually *highly* correlated.
 - This is a good thing—we only need to worry about a low-dimensional *subspace*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◆○

- High noise
- Small number of data exemplars
- Very large number of features. Well actually, the features are usually *highly* correlated.
 - This is a good thing—we only need to worry about a low-dimensional *subspace*.
 - This is a bad thing—can lead to trying to optimize very "stiff" systems.

・ロト ・聞ト ・ヨト ・ヨト

æ

・ロト ・聞ト ・ヨト ・ヨト

-2

・ロト ・聞ト ・ヨト ・ヨト

æ

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 → 今へ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ●

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへで

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆

・ロト ・ 同ト ・ ヨト ・

-

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の ヘ ○

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の ヘ ○

▲□▶▲圖▶▲≣▶▲≣▶ 差 のへ⊙

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

▲日 ▶ ▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 国 ● ● ● ●

From Collobert & Weston's NIPS 2009 tutorial:

Engineering: complex features, simple algorithm.

vs

Machine-Learning: simple input, implicitly learn the features.

From Collobert & Weston's NIPS 2009 tutorial:

Engineering: complex features, simple algorithm. *Preprocessing* (spatial subspace, spectral filtering...) then *classification*

vs

Machine-Learning: simple input, implicitly learn the features.

From Collobert & Weston's NIPS 2009 tutorial:

Engineering: complex features, simple algorithm. *Preprocessing* (spatial subspace, spectral filtering...) then *classification*

VS

Machine-Learning: simple input, implicitly learn the features. Idea: instead of performing CSP's least-square criterion to estimate discriminative sources

$$S = WX$$

then classifying the resulting bandpower features diag (SS^{\top}) according to some *other* loss function, let's treat W as the hyperparameters of (e.g.) a Gaussian Process classifier and optimize them according to the marginal-likelihood...

Slightly deeper learning?

æ

Slightly deeper learning?

Slightly deeper learning?

э

Note:

- large individual variation
- particular benefits for smaller, noisier datasets.

Deeper learning ~> more "hands-free" operation

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Deeper still?

Automatic combination of/selection between first- and second-order features

(ロ)、(型)、(E)、(E)、 E) の(の)

• Christoforou et al. (2008) JMLR

Automatic combination of/selection between first- and second-order features

(ロ)、(型)、(E)、(E)、 E) の(の)

- Christoforou et al. (2008) JMLR
- Tomioka & Müller (2010) Neuroimage

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka & Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◆○

• Tomioka & Müller (2010) Neuroimage

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka & Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka & Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka & Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka & Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks
 - extensible to arbitrary number of dimensions (time, frequency, cross-subject, cross-condition, ...)

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka & Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka & Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks
 - extensible to arbitrary number of dimensions (time, frequency, cross-subject, cross-condition, ...)

Pre-processing can still make a difference to performance (e.g. equalizing variance across frequency bands to compensate for 1/f; spatial pre-whitening in both first- and second-order cases).

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka & Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka & Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks
 - extensible to arbitrary number of dimensions (time, frequency, cross-subject, cross-condition, ...)

Pre-processing can still make a difference to performance (e.g. equalizing variance across frequency bands to compensate for 1/f; spatial pre-whitening in both first- and second-order cases).

Pre-processing the data can be seen as equivalent to changing the regularization environment. What is the "ideal" regularization strategy? $\Rightarrow \quad \Rightarrow \quad \circ \circ \circ \circ$

In linear ERP classification: classifier finds weights ${\rm M}$ for classifying space- $\times\text{-time}$ "image" segments:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

М

In linear ERP classification: classifier finds weights ${\rm M}$ for classifying space- $\times\text{-time}$ "image" segments:

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

In linear ERP classification: classifier finds weights ${\rm M}$ for classifying space- $\times\text{-time}$ "image" segments:

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

In linear ERP classification: classifier finds weights ${\rm M}$ for classifying space- $\times\text{-time}$ "image" segments:

М

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

In linear ERP classification: classifier finds weights ${\rm M}$ for classifying space- $\times\text{-time}$ "image" segments:

 L_Σ regularization: regularize by putting an L-1 penalty on the singular values of $\mathrm{M}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

In linear ERP classification: classifier finds weights ${\rm M}$ for classifying space- \times -time "image" segments:

 L_Σ regularization: regularize by putting an L-1 penalty on the singular values of $\mathrm{M}.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

- Tomioka & Aihara (2007) ICML 2007.
- Tomioka & Müller (2010), Neuroimage.
- Farquhar (2009), Neural Networks.

Example Sparsification Results

A BCI based on auditory stimuli (Hill et al., NIPS 2004 & BBCI Workshop 2009):

Example Sparsification Results

A BCI based on auditory stimuli (Hill et al., NIPS 2004 & BBCI Workshop 2009):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_Σ regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Incorporating prior knowledge/setting up the regularization environment in better ways.

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_Σ regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this NIPS).

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this NIPS).

Dealing with non-stationarities in brain data (see Klaus-Robert Müller's talk at this symposium, re SSA).

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this NIPS).

Dealing with non-stationarities in brain data (see Klaus-Robert Müller's talk at this symposium, re SSA).

Finding ways of *encoding* information in more user- and brain-friendly ways (e.g. see Hill et al., last NIPS).