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interruptions

fatigue, pain, drugs

noisy, non-“standard” and non-stationary EEG

slower ERP responses, more low-frequency dominance
blood-sugar- and fatigue-dependent changes
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Problems with Clinical Deployment

“good-day-bad-day” syndrome: any exploration of induction
parameters requires an alternating or mixed design, halving
the amount of data in any one experimental condition on any
one day

data set sizes are small to start with

more frequent session-to-session transfer problems
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Implanted microelectrode

array (Cyberkinetics, Inc)

Figure from Hochberg

et al. Nature, July 2006.
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Department of Epileptology,

University of Bonn, 2004

Electrocorticography (ECoG)
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Measurement systems for BCI

Magnetoencephalography (MEG)

Functional Magnetic Resonance
Imaging (fMRI)
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Most common example: visual grid speller (Farwell & Donchin
1988)
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Induction

Attention (overt and/or covert) to one of a number of stimuli

Most common example: visual grid speller (Farwell & Donchin
1988)
BUT: for completely paralysed users, vision deteriorates.
 incentive to design auditory-/tactile-based methods.

“Mental tasks”

Most common example: imagined movement of hands or feet.
BUT: for users with motor-neuron disease, will the motor
system continue functioning well enough long-term?
 incentive to explore non-motor mental tasks.



Event-Related Potentials

figures from Polich (2007)
Clinical Neurophysiology



Event-Related Potentials

figures from Polich (2007)
Clinical Neurophysiology



Event-Related Potentials

figures from Polich (2007)
Clinical Neurophysiology



Event-Related Potentials

figures from Polich (2007)
Clinical Neurophysiology



Event-Related Potentials
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Bandpower

Event-Related Desynchronization in motor imagery: classify
imagined left hand movement vs. imagined right hand movement
based on power in (say) 10 Hz-band of estimated pre-motor cortex
sources in the left and right hemispheres.
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An Overfitting Nightmare?

High noise

Small number of data exemplars

Very large number of features.
Well actually, the features are usually highly correlated.

This is a good thing—we only need to worry about a
low-dimensional subspace.

This is a bad thing—can lead to trying to optimize very “stiff”
systems.
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Cheap supervised rotation with CSP
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Slightly deeper learning?

From Collobert & Weston’s NIPS 2009 tutorial:

Engineering: complex features, simple algorithm.
Preprocessing (spatial subspace, spectral filtering...) then classification

vs

Machine-Learning: simple input, implicitly learn the features.

Idea: instead of performing CSP’s least-square criterion to estimate
discriminative sources

S = WX

then classifying the resulting bandpower features diag (SS
⊤) according to some

other loss function, let’s treat W as the hyperparameters of (e.g.) a Gaussian

Process classifier and optimize them according to the marginal-likelihood...
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Note:
large individual variation

particular benefits for smaller, noisier datasets.



Deeper learning  more “hands-free” operation
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Deeper still?

Automatic combination of/selection between first- and second-order features

Christoforou et al. (2008) JMLR

Tomioka & Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting

between frequency bands

Tomioka & Müller (2010) Neuroimage

Farquhar (2009) Neural Networks

extensible to arbitrary number of dimensions (time, frequency,

cross-subject, cross-condition, . . . )

Pre-processing can still make a difference to performance (e.g. equalizing

variance across frequency bands to compensate for 1/f ; spatial pre-whitening

in both first- and second-order cases).

Pre-processing the data can be seen as equivalent to changing the

regularization environment. What is the “ideal” regularization strategy?
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Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space-×-time

“image” segments:

M

=

Ws W
⊤

t

LΣ regularization: regularize by putting an L-1 penalty on the singular values of M.

Tomioka & Aihara (2007) ICML 2007.

Tomioka & Müller (2010), Neuroimage.

Farquhar (2009), Neural Networks.
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A BCI based on auditory stimuli (Hill et al., NIPS 2004 & BBCI Workshop

2009):
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Subjects are ordered left−to−right by
decreasing online performance.

Model selection appears to choose fewer
components for the better−performing subjects.
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How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards “deeper” learning strategies

improve performance on small/noisy datasets

make systems run more “hands-free”

Use of LΣ regularization (and its generalization to > 2 dimensions) to find the
right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in
better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this
NIPS).

Dealing with non-stationarities in brain data (see Klaus-Robert Müller’s talk at
this symposium, re SSA).

Finding ways of encoding information in more user- and brain-friendly ways

(e.g. see Hill et al., last NIPS).


