Machine-Learning for Brain-Computer Interfaces

Jeremy Hill

Max Planck Institute
for Biological Cybernetics
Tübingen, Germany

BCI as a Potential Assistive Technology

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)

BCl as a Potential Assistive Technology

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
- Communication

BCI as a Potential Assistive Technology

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
- Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)

BCI as a Potential Assistive Technology

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
- Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)
- Rehabilitation of movement

BCl as a Potential Assistive Technology

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
- Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)
- Rehabilitation of movement
- Relief of phantom-limb pain

BCI as a Potential Assistive Technology

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
- Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)
- Rehabilitation of movement
- Relief of phantom-limb pain
- Control of prosthetics or FES

BCl as a Potential Assistive Technology

- Complete paralysis (e.g. late-stage Amyotrophic Lateral Sclerosis)
- Communication
- Disconnection of motor pathways (e.g. subcortical stroke, amputation)
- Rehabilitation of movement
- Relief of phantom-limb pain
- Control of prosthetics or FES
- Other...

Problems with Clinical Deployment

- interruptions

Problems with Clinical Deployment

- interruptions
- fatigue, pain, drugs

Problems with Clinical Deployment

- interruptions
- fatigue, pain, drugs
- noisy, non-"standard" and non-stationary EEG

Problems with Clinical Deployment

- interruptions
- fatigue, pain, drugs
- noisy, non- "standard" and non-stationary EEG
- slower ERP responses, more low-frequency dominance

Problems with Clinical Deployment

- interruptions
- fatigue, pain, drugs
- noisy, non-"standard" and non-stationary EEG
- slower ERP responses, more low-frequency dominance
- blood-sugar- and fatigue-dependent changes

Problems with Clinical Deployment

- "good-day-bad-day" syndrome: any exploration of induction parameters requires an alternating or mixed design, halving the amount of data in any one experimental condition on any one day

Problems with Clinical Deployment

- "good-day-bad-day" syndrome: any exploration of induction parameters requires an alternating or mixed design, halving the amount of data in any one experimental condition on any one day
- data set sizes are small to start with

Problems with Clinical Deployment

- "good-day-bad-day" syndrome: any exploration of induction parameters requires an alternating or mixed design, halving the amount of data in any one experimental condition on any one day
- data set sizes are small to start with
- more frequent session-to-session transfer problems

Measurement systems for BCl

Implanted microelectrode
array (Cyberkinetics, Inc)

Figure from Hochberg et al. Nature, July 2006.

Measurement systems for BCl

Department of Epileptology, University of Bonn, 2004

Electrocorticography (ECoG)

Measurement systems for BCl

Electroencephalography (EEG)

Measurement systems for BCl

Near Infra-Red Spectrophotometry (NIRS)

Measurement systems for BCl

Magnetoencephalography (MEG)

Functional Magnetic Resonance Imaging (fMRI)

Induction

- Attention (overt and/or covert) to one of a number of stimuli

Induction

- Attention (overt and/or covert) to one of a number of stimuli
- Most common example: visual grid speller (Farwell \& Donchin 1988)

Induction

$$
\begin{array}{cccccc}
\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E} & \mathbf{F} \\
\mathrm{G} & \mathrm{H} & \mathrm{I} & \mathrm{~J} & \mathrm{~K} & \mathrm{~L} \\
\mathrm{M} & \mathrm{~N} & 0 & \mathrm{P} & \mathrm{Q} & \mathrm{R} \\
\mathrm{~S} & \mathrm{~T} & \mathrm{U} & \mathrm{~V} & \mathrm{~N} & \mathrm{X} \\
\mathrm{Y} & \mathrm{Z} & 1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 & 9 & \mathrm{SpC}
\end{array}
$$

Induction

A	B	C	D	E	\mathbf{F}
G	H	I	J	K	\mathbf{L}
M	N	\bigcirc	P	Q	\mathbf{R}
S	I	U	V	K	\mathbf{X}
Y	Z	1	2	3	$\mathbf{4}$
5	6	7	8	9	$\mathbf{s p c}$

Induction

A	\mathbf{B}	C	D	E	F
G	\mathbf{H}	I	J	K	I
M	\mathbf{N}	\bigcirc	P	Q	R
S	\mathbf{T}	U	V	W	X
Y	\mathbf{Z}	1	2	3	4
5	$\mathbf{6}$	7	8	9	SpC

Induction

A	B	C	D	E	F
G	H	I	\mathbf{J}	K	I
M	N	\bigcirc	\mathbf{P}	Q	R
S	T	U	\mathbf{V}	W	X
\mathbf{Y}	\mathbf{Z}	$\mathbf{1}$	$\mathbf{2}$	3	4
$\mathbf{5}$	6	7	$\mathbf{8}$	9	SpC

Induction

\mathbf{A}	B	C	D	E	F
\mathbf{G}	H	I	J	K	I
\mathbf{M}	N	\bigcirc	P	Q	R
\mathbf{S}	I	U	V	N	X
\mathbf{Y}	Z	1	2	3	4
$\mathbf{5}$	6	7	8	9	SpC

Induction

A	B	C	D	E	E
G	H	I	J	K	I
\mathbf{M}	N	O	P	Q	R
\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}
\mathbf{Y}	Z	1	2	3	4
5	6	7	8	9	spC

Induction

- Attention (overt and/or covert) to one of a number of stimuli
- Most common example: visual grid speller (Farwell \& Donchin 1988)
- BUT: for completely paralysed users, vision deteriorates.

Induction

- Attention (overt and/or covert) to one of a number of stimuli
- Most common example: visual grid speller (Farwell \& Donchin 1988)
- BUT: for completely paralysed users, vision deteriorates. \rightsquigarrow incentive to design auditory-/tactile-based methods.

Induction

- Attention (overt and/or covert) to one of a number of stimuli
- Most common example: visual grid speller (Farwell \& Donchin 1988)
- BUT: for completely paralysed users, vision deteriorates. \rightsquigarrow incentive to design auditory-/tactile-based methods.
- "Mental tasks"

Induction

- Attention (overt and/or covert) to one of a number of stimuli
- Most common example: visual grid speller (Farwell \& Donchin 1988)
- BUT: for completely paralysed users, vision deteriorates. \rightsquigarrow incentive to design auditory-/tactile-based methods.
- "Mental tasks"
- Most common example: imagined movement of hands or feet.

Induction

- Attention (overt and/or covert) to one of a number of stimuli
- Most common example: visual grid speller (Farwell \& Donchin 1988)
- BUT: for completely paralysed users, vision deteriorates. \rightsquigarrow incentive to design auditory-/tactile-based methods.
- "Mental tasks"
- Most common example: imagined movement of hands or feet.
- BUT: for users with motor-neuron disease, will the motor system continue functioning well enough long-term?

Induction

- Attention (overt and/or covert) to one of a number of stimuli
- Most common example: visual grid speller (Farwell \& Donchin 1988)
- BUT: for completely paralysed users, vision deteriorates. \rightsquigarrow incentive to design auditory-/tactile-based methods.
- "Mental tasks"
- Most common example: imagined movement of hands or feet.
- BUT: for users with motor-neuron disease, will the motor system continue functioning well enough long-term? \rightsquigarrow incentive to explore non-motor mental tasks.

Event-Related Potentials

SINGLE-STIMULUS

Event-Related Potentials

figures from Polich (2007)
Clinical Neurophysiology

ODDBALL

Event-Related Potentials

THREE-STIMULUS

Event-Related Potentials

figures from Polich (2007)
Clinical Neurophysiology

Event-Related Potentials

Bandpower

Event-Related Desynchronization in motor imagery: classify imagined left hand movement vs. imagined right hand movement based on power in (say) 10 Hz -band of estimated pre-motor cortex sources in the left and right hemispheres.

log bandpower L. hem.

Bandpower

Bandpower

An Overfitting Nightmare?

- High noise

An Overfitting Nightmare?

- High noise
- Small number of data exemplars

An Overfitting Nightmare?

- High noise
- Small number of data exemplars
- Very large number of features.

An Overfitting Nightmare?

- High noise
- Small number of data exemplars
- Very large number of features. Well actually, the features are usually highly correlated.

An Overfitting Nightmare?

- High noise
- Small number of data exemplars
- Very large number of features. Well actually, the features are usually highly correlated.
- This is a good thing-we only need to worry about a low-dimensional subspace.

An Overfitting Nightmare?

- High noise
- Small number of data exemplars
- Very large number of features. Well actually, the features are usually highly correlated.
- This is a good thing-we only need to worry about a low-dimensional subspace.
- This is a bad thing-can lead to trying to optimize very "stiff" systems.

Source Separation

Source Separation

Source Separation

Source Separation

Cheap supervised rotation with CSP

CSP: outlier- (artifact-) sensitivity

Slightly deeper learning?

From Collobert \& Weston's NIPS 2009 tutorial:
Engineering: complex features, simple algorithm.
vs

Machine-Learning: simple input, implicitly learn the features.

Slightly deeper learning?

From Collobert \& Weston's NIPS 2009 tutorial:
Engineering: complex features, simple algorithm.
Preprocessing (spatial subspace, spectral filtering...) then classification vs

Machine-Learning: simple input, implicitly learn the features.

Slightly deeper learning?

From Collobert \& Weston's NIPS 2009 tutorial:
Engineering: complex features, simple algorithm.
Preprocessing (spatial subspace, spectral filtering...) then classification

VS

Machine-Learning: simple input, implicitly learn the features.
Idea: instead of performing CSP's least-square criterion to estimate discriminative sources

$$
\mathrm{S}=\mathrm{WX}
$$

then classifying the resulting bandpower features diag (SS^{\top}) according to some other loss function, let's treat W as the hyperparameters of (e.g.) a Gaussian Process classifier and optimize them according to the marginal-likelihood...

Slightly deeper learning?

Slightly deeper learning?

Slightly deeper learning?

Note:

- large individual variation
- particular benefits for smaller, noisier datasets.

Deeper learning \rightsquigarrow more "hands-free" operation

Deeper still?

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR

Deeper still?

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka \& Müller (2010) Neuroimage

Deeper still?

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka \& Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka \& Müller (2010) Neuroimage

Deeper still?

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka \& Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka \& Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks

Deeper still?

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka \& Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka \& Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks
- extensible to arbitrary number of dimensions (time, frequency, cross-subject, cross-condition, ...)

Deeper still?

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka \& Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka \& Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks
- extensible to arbitrary number of dimensions (time, frequency, cross-subject, cross-condition, ...)

Pre-processing can still make a difference to performance (e.g. equalizing variance across frequency bands to compensate for $1 / f$; spatial pre-whitening in both first- and second-order cases).

Deeper still?

Automatic combination of/selection between first- and second-order features

- Christoforou et al. (2008) JMLR
- Tomioka \& Müller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting between frequency bands

- Tomioka \& Müller (2010) Neuroimage
- Farquhar (2009) Neural Networks
- extensible to arbitrary number of dimensions (time, frequency, cross-subject, cross-condition, ...)

Pre-processing can still make a difference to performance (e.g. equalizing variance across frequency bands to compensate for $1 / f$; spatial pre-whitening in both first- and second-order cases).

Pre-processing the data can be seen as equivalent to changing the regularization environment. What is the "ideal" regularization strategy?

Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space- \times-time "image" segments:

M

Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space- \times-time "image" segments:

M

Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space- \times-time "image" segments:

$\mathbf{W}_{\mathrm{s} 1} \quad \mathbf{W}_{\mathrm{t} 1}^{\top}$

$\mathbf{W}_{\mathrm{s} 2} \quad \mathbf{W}_{\mathrm{t} 2}^{\top}$

Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space- \times-time "image" segments:

M

$\mathrm{W}_{\mathrm{s}} \mathrm{W}_{\mathrm{t}}^{\top}$

Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space- \times-time "image" segments:

M

$W_{s} W_{t}^{\top}$
L_{Σ} regularization: regularize by putting an L-1 penalty on the singular values of M .

Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space- \times-time "image" segments:

M

$W_{s} W_{t}^{\top}$
L_{Σ} regularization: regularize by putting an L-1 penalty on the singular values of M .

- Tomioka \& Aihara (2007) ICML 2007.
- Tomioka \& Müller (2010), Neuroimage.
- Farquhar (2009), Neural Networks.

Example Sparsification Results

A BCI based on auditory stimuli (Hill et al., NIPS 2004 \& BBCI Workshop 2009):

Example Sparsification Results

A BCI based on auditory stimuli (Hill et al., NIPS 2004 \& BBCI Workshop 2009):

How Can Machine-Learners Help to Make BCI a Clinical Reality?

How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in better ways.

How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this NIPS).

How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this NIPS).

Dealing with non-stationarities in brain data (see Klaus-Robert Müller's talk at this symposium, re SSA).

How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards "deeper" learning strategies

- improve performance on small/noisy datasets
- make systems run more "hands-free"

Use of L_{Σ} regularization (and its generalization to >2 dimensions) to find the right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this NIPS).

Dealing with non-stationarities in brain data (see Klaus-Robert Müller's talk at this symposium, re SSA).

Finding ways of encoding information in more user- and brain-friendly ways (e.g. see Hill et al., last NIPS).

